“Public Health and Support for Meaningful Use in Health Information Exchange”
Noam H. Arzt, PhD, FHIMSS
President
HLN Consulting, LLC
San Diego, CA
June 10, 2010

Conflict of Interest Disclosure
Noam H. Arzt, PhD, FHIMSS

Has no real or apparent conflicts of interest to report.
Session Objectives

• Identify the ways in which public health is positioned to participate in and assist health information exchange efforts based on the evolution of public health systems
• Identify specific public health goals and requirements in the CMS EHR Incentive Programs and how public health should successfully participate.
• Provide insight to help bridge the gap between public health and clinical IT perspectives
Notice of Proposed Rulemaking (NPR)

- Health Policy Outcome: Improve public health
- Three Stage 1 objectives:
 - Submit data to Immunization Registries (P, H)
 - Disease Surveillance: Transmit lab results (H)
 - Provide syndromic surveillance data (H, P)
- Proviso: “where required and accepted”
- Standards are well developed and harmonized for these transactions
 - HITSP IS02 (Biosurveillance)
 - HITSP IS10 (Immunization)
 - HITSP IS11 (PH Case Reporting)

“Mixed Bag” of Issues to Consider

- Stage 1 requirements somewhat meager, with a big “escape clause”
- Stage 2 (and 3) requirements likely to be more stringent, especially for data exchange
- No consistent tests for Stage 1 measures – NIST will likely stick to the “letter of the law”
- The immunization use case is a good one for HIE
- Public Health not yet utilizing document-center approaches (e.g., CCD)
Issues to Consider (continued)

- It may take an HIE several years to develop the capability to accept these transactions, so planning early is good
- Public health underfunded to make data exchange “accepted” in many agencies or to refocus data exchange to an HIE
- Federal agencies not consistently coordinating their funding, activities, requirements
- ONC State HIE Cooperative Agreements require this coordination
- Wide variety of organization in public health agencies making leverage of programs uneven

Evolution of Public Health Systems
Public Health Systems

- Began as program-specific, stovepipe systems, often PC-or mainframe-based
- Evolved into more robust specialized systems
- In some cases became integrated systems, either patient-centric or case-centric
- Eventually some applications aimed outside of the agency

Enterprise-wide Integration

- Participation by some programs may be mandated
- Usually voluntary by default
- Mandated in most instances
- ...but usually not across the board

Voluntary

Mandated

Centralized Model

Cooperative Model

De-centralized Model
From Integration to Interoperability

- To support outwardly-facing projects
- To assimilate into an emerging HIE-enabled world
- As a bi-product of ARRA/HITECH

HL7 Definition of Interoperability

- Technical Interoperability
 Structure, syntax, reliable communication
- Semantic Interoperability
 Full meaning preserved
- Process Interoperability
 Integral to (healthcare delivery) process, work flow

Source: HL7 EHR Interoperability Working Group “Coming to Terms” Working Paper developed in 2006
Technical Interoperability: System-to-system Messaging

- Public health systems have been engaged in data exchange for years (mostly to them)
- Though flat file formats still dominate, HL7 messaging is beginning to gain steam

Semantic Interoperability: VT Health Info Tech Plan

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS Healthcare Common Procedure Code System (HCPCS)</td>
<td>This is the standard coding for procedures widely used in the healthcare community: Level I: Hospital Outpatient Procedures (CPT-4) Level II: Products, supplies and other services</td>
</tr>
<tr>
<td>Centers for Disease Control and Prevention (CDC) Race and Ethnicity Code Sets</td>
<td>These code sets are based on current federal standards</td>
</tr>
<tr>
<td>College of American Pathologists Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT®)</td>
<td>This is the standard coding used for a wide variety of medical and health care terms</td>
</tr>
<tr>
<td>International Classification of Diseases, Ninth Edition, Clinical Modifications (ICD-9-CM)</td>
<td>This is the standard coding used for diagnoses and procedures by hospital: Volume 1: Hospital diagnoses Volume 2: Inpatient hospital procedures</td>
</tr>
<tr>
<td>International Classification of Diseases, 10th revision, Related Health Problems (ICD-10 CM)</td>
<td>This revision to ICD-9 CM contains a number of important improvements, this standard is not yet widely implemented</td>
</tr>
<tr>
<td>Logical Observation Identifiers Names and Codes (LOINC®)</td>
<td>This is the standard coding for laboratory and clinical observations used by health care systems and messaging (like HL7)</td>
</tr>
<tr>
<td>National Library of Medicine (NLM) Unified Medical Language System (UMLS) RxNorm</td>
<td>This is the standard for coding the names of drugs and dosing forms</td>
</tr>
<tr>
<td>National Drug Code (NDC)</td>
<td>This is a universal product identifier for human drugs</td>
</tr>
</tbody>
</table>
Process Interoperability: Immunization Management

Case Study: NYC MCI

- LeadQuest and CIR developed independently
- Integrated by sharing a Master Patient Index
- System evolved incrementally over 10+ years
Improvement in NYC

TABLE 1: Number and percentage of matching results of the “initial load” data by system

<table>
<thead>
<tr>
<th>Within system</th>
<th>Between system</th>
<th>Within and between systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CIR</td>
</tr>
<tr>
<td>Pre-MOI, N</td>
<td>2,426,369</td>
<td>2,194,216</td>
</tr>
<tr>
<td>Post-MOI, N</td>
<td>2,067,203</td>
<td>2,067,203</td>
</tr>
<tr>
<td>Matching, N</td>
<td>361,539</td>
<td>162,524</td>
</tr>
<tr>
<td>Matching, %</td>
<td>14.9</td>
<td>7.4</td>
</tr>
<tr>
<td>Human review, N</td>
<td>74,735</td>
<td>95,986</td>
</tr>
<tr>
<td>Human review, %</td>
<td>3.1</td>
<td>2.6</td>
</tr>
</tbody>
</table>

*This number represents the sum of records in each data system after MOIs’ internal de-duplication, ie., 3,965,230 – 2,041,055 = 4,086,665
CIR = Citywide Immunization Registry; LG = Lead Out; MOI = Master Child Index

TABLE 2: Number and percentage of Lead Quest records merged with Citywide Immunization Registry or vital records

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CIR</td>
<td>851,488*</td>
<td>1,235,734*</td>
<td>404,586*</td>
<td>80.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LG</td>
<td>131,268</td>
<td>131,268</td>
<td>91,236</td>
<td>79.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOI</td>
<td>131,268</td>
<td>131,268</td>
<td>91,236</td>
<td>79.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integration</td>
<td>131,268</td>
<td>131,268</td>
<td>91,236</td>
<td>79.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>merged with CIR records, %</td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CIR: From Integration to Interoperability

- Added HL7 v2 SOAP-based web services
- Allows standards-based submission of new immunizations and histories
- Allows access to immunization schedule through system-to-system query
- New functionality added
 - Without disruption to current operations
 - Compliant with national standards
 - Without re-architecting the entire system
What Can Public Health Contribute to an HIE/HIO?

- “Quick start” by leveraging existing activities, including interfaces to labs and providers
- Existing data, including consolidated data and population-based data
- Expertise: de-duplication, database management, web applications, data exchange including HL7
- Existing relationships with many relevant stakeholders: providers, hospitals, payers, professional associations
- Governance: experience in negotiating and implementing data sharing agreements
- Meaningful use: facilitate achievement
Benefits to Public Health of HIE/HIO Participation

• Many of public health’s data trading partners will choose to interoperate with an HIEN and reduce (or eliminate!) superfluous connections
• Public health can gain access to data and trading partners who previously might not have participated in its initiatives
• Better to be an insider than an outsider: Public health risks being left out as the medical community moves ahead

Risks to Public Health

• Public health applications targeted at these users may have slower uptake as organizations encourage (or require) users to stay with institutionally-supported applications
• Pressure will build for providers to interoperate solely through HIEs
• Public health systems run the risk of becoming focused as data repositories as users over time lose access to their distinctive features
• While many specialized features are part of the approved HL7 EHR FM specification they are often not yet required for CCHIT (or other) certification
Bridging the Interoperability Gap

- Public health world is largely data-centric and not document-centric
- EHR system world is becoming document-centric: public health systems need time to adjust
- Consider more advanced interoperability to leverage unique public health capabilities
Advanced Interoperability: Example

- Immunization Information Systems (IIS) serve a jurisdiction by providing a common repository for immunization information
- IIS provides specialized features not typically found in an EHR-S, like:
 - Recommendations of next immunizations due
 - Reminder and recall to ensure that patients return
 - Vaccine ordering and order processing
 - Practice-level assessment of up-to-date status

IIS – EHR-S Tension

Majority of Clinical Functionality
Record vaccination; view history
Algorithm, Reminder/Recall
Case Study

- KIDSNET, the integrated child health system in RI, did not have a robust immunization predictor algorithm
- Decided to use a version of the algorithm developed in another state (with permission)
- Deployed algorithm as a web service rather than absorbed into KIDSNET
- Other applications could now easily make use of the service

Case Study (continued)

- Web service is called in real time from KIDSNET application when needed.
- Core KIDSNET system interoperates with Web Immunization Service Evaluation and Recommendation (WISER) without issue.
Case Study (continued)

This future vision can co-exist with the previous model: Web service can interact with IIS and provider EHR systems.

Selected Readings

Selected Sources

- CCHIT: http://www.cchit.org/
- Connecting for Health (Markle Foundation): http://www.connectingforhealth.org/
- eHI: http://www.ehealthinitiative.org/
- HITSP: http://www.hitsp.org/
- HLN: http://www.hln.com/resources/
- NCPHI: http://www.cdc.gov/ncphi/
- ONC: http://www.hhs.gov/healthit/
- PDHSC: http://www.phdsc.org/
- PHII: http://www.phii.org/
- SLHIE: http://statehieresources.org/

Questions?

For further information, please contact:
Noam H. Arzt
arzt@hln.com